Neutron Powder Diffraction and Magnetic Measurements on RbTil ${ }_{3}$, RbVI_{3}, and CsVI_{3}

H. W. ZANDBERGEN
Gorlaeus Laboratories, University of Leiden, P.O. Box 9502, 2300 RA
Leiden, The Netherlands

Received June 18, 1980; revised form September 10, 1980

Abstract

$\mathrm{CsVI}_{3}\left(a=8.124(1) c=6.774(1) \AA, Z=2, P 6_{3} / m m c\right.$ at 293 K$)$ adopts the BaNiO_{3} structure. Threedimensional magnetic ordering takes place at $T_{\mathrm{c}}=32(1) \mathrm{K}$. At 1.2 K the magnetic moment is $1.64(5) \mu_{\mathrm{B}}$ and it forms a 120° spin structure in the basal plane. $\mathrm{RbVI}_{3}\left(a=13.863(2) c=6.807(1) \AA, Z=6, P 6_{3} \mathrm{~cm}\right.$ or $P \overline{3} c 1$ at 293 K) and $\mathrm{RbTiI}_{3}\left(a=14.024(3) \AA, c=6.796(2) \AA, Z=6, P 6_{3} c m\right.$ or $P \overline{3} c 1$ at 293 K$)$ adopt a distorted BaNiO_{3} structure, probably isostructural with $\mathrm{KNiCl}_{3} . T_{\text {c }}$ of RbVI_{3} is $25(1) \mathrm{K}$. At 1.2 K , RbVI_{3} has a spin structure similar to the one of CsVI_{3} with a magnetic moment of $1.44(6) \mu_{\mathrm{B}}$. RbTiI_{3} shows no magnetic ordering at 4.2 K . It is shown that a deviation from the 120° structure is expected for compounds with a distorted BaNiO_{3} structure such as RbVI_{3}. The cell dimensions of CsTiI_{3} are reported.

Introduction

The investigations on the title compounds are part of our research program on the crystallographic and magnetic properties of the compounds in the series $A \mathrm{I}-B \mathrm{I}_{2}$, A being $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{In}$, or Tl , and B a firstrow transition element, $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cd}$, or Hg .

Two structure types exist for the $A B \mathrm{I}_{3}$ compounds, viz., the $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ structure $\left(\mathrm{TlMnI}_{3}(1,2), \mathrm{TlFeI}_{3}(2)\right.$, and TlCdI_{3} (3)) and the BaNiO_{3} structure (see Table I).
The compounds with the BaNiO_{3} structure have been studied extensively because of their quasi-one-dimensional behavior. Crystallographic and magnetic measurements are reported of the V compounds $\mathrm{RbVCl}_{3}, \mathrm{CsVCl}_{3}, \mathrm{CsVBr}_{3}$, and CsVI_{3} (46). These compounds exhibit very strong one-dimensional antiferromagnetic behavior. The exchange interaction of CsVI_{3} is reported to be $-61(8) \mathrm{K}$. However, a bad fit 0022-4596/81/060308-10\$02.00/0
was obtained using the model of Smith and Friedberg $(5,7) \mathrm{CsVI}_{3}$ is reported to be isostructural to BaNiO_{3} (5).
In this paper the results of neutron powder diffraction and magnetic measurements on single crystals of RbVI_{3} and CsVI_{3} and a powder of RbTiI_{3} are reported.

Experimental

The title compounds were prepared from a stoichiometric mixture of the binary compounds. Ultrapure RbI and CsI purchased from Merck were used. VI_{2} was prepared from the elements in an almost horizontal evacuated and sealed quartz tube in a furnace with a temperature gradient $200^{\circ} \mathrm{C}$ (I side) $900^{\circ} \mathrm{C}$ (V side). TiI I_{2} was prepared by disproportion of TiI_{3} which was prepared in a manner similar to that used for $\mathrm{VI}_{2}(200-$ $700^{\circ} \mathrm{C}$). The preparation of pure samples is very difficult because of the high sensitivity

TABLE I
Cell Dimensions at 293 K of ABI_{3} Compounds with a BaNiO_{3}-Like Structure ${ }^{a}$

Compound	Diffraction type	$\begin{gathered} a \\ (\AA) \end{gathered}$	$\begin{gathered} b \\ (\AA) \end{gathered}$	$\begin{gathered} c \\ (\AA) \end{gathered}$	$\begin{gathered} \beta \\ (\mathrm{deg}) \end{gathered}$
RbTiI_{3}	ND	14.024(3)		6.796(2)	
CsTiI_{3}	XD	$8.205(5)$		6.784(5)	
RbVI_{3}	ND	13.863(2)		6.807(1)	
CsVI_{3}	ND	8.124(1)		6.774(1)	
RbCrI_{3}	ND	13.772(2)	8.000 (1)	7.069(1)	95.85(1)
CsCrI_{3}	ND	8.126(1)		6.944 (1)	
CsMnI_{3}	ND	8.190 (1)		$6.958(1)$	
CsFel_{3}	ND	8.122(1)		6.807(1)	
CsNiI_{3}	XD	8.007(3)		6.707(4)	

${ }^{\text {a }}$ The cell dimensions are determined by profile refinement (IO) of neutron powder diffraction measurements (ND) or by least-squares refinement of 2θ values taken from X -ray diffraction diagrams (XD). The unit cell of RbCrI_{3} is monoclinic distorted due to the cooperative JahnTeller effect.
to air and moisture and the possible formation of other compounds such as $A_{3} B_{2} I_{9}$. The samples of CsVI_{3} and RbVI_{3}, used for neutron diffraction, were powdered and annealed several times at $750^{\circ} \mathrm{C}$. RbTiI_{3} can only be prepared by annealing below $450^{\circ} \mathrm{C}$ since TiI_{2} disproportionates above this temperature (8). No pure samples could be prepared. On top of problems arising from the possible formation of $\mathrm{Rb}_{2} \mathrm{TiI}_{6}$ and $\mathrm{Rb}_{3} \mathrm{Ti}_{2} \mathrm{I}_{9}$, the compound is so sensitive to air and moisture that although all manipulations were done in a dry glovebox under argon, samples were more contaminated after each cycle of powdering and annealing. CsTiI_{3} could not be prepared below $450^{\circ} \mathrm{C}$. When the proper amounts of CsI and TiI_{2} were melted in an evacuated quartz tube for 2 min at $800^{\circ} \mathrm{C}$ the X -ray diffraction pattern of this sample contained reflections of $\mathrm{Cs}_{2} \mathrm{TiI}_{6}$ besides reflections of CsTiI_{3}. The cell dimensions of CsTiI_{3} are given in Table I.

The compounds must be kept in evacuated sealed glass tubes. Compounds kept in a tube with nitrogen or argon and closed with a rubber stopper kept losing I_{2}.

Single crystals of CsVI_{3} and RbVI_{3} were
grown using the Bridgman method. Although, after melting, a stoichiometric mixture of the binary compounds contained RbI and VI_{2}, suggesting RbVI_{3} to be incongruent, it was possible to obtain by this method single crystals of RbVI_{3} large enough for the magnetic measurements. The single crystals of CsVI_{3} and RbVI_{3} used for the magnetic measurements were cut from a larger single crystal. Since the crystals cleave very easily along the (110) plane the cutting of the crystals along the (0001) plane had to be done very gently.
In the low-temperature region magnetic measurements were performed by means of a Vibrating Sample Magnetometer (9) equipped with a superconducting magnet supplying fields up to 56 kOe . In the temperature region $80-300 \mathrm{~K}$ the temperature dependence of the susceptibility was measured on a powder of RbVI_{3} using the Faraday method.
Neutron powder diffraction recordings were collected of CsVI_{3} (293 and 1.2 K), RbVI_{3} (293 and 1.2 K), and $\mathrm{RbTiI}_{3}(293$ and 4.2 K) at the HFR reactor at Petten (The Netherlands) using $\lambda=2.5722(2) \AA$ with 30^{\prime} collimation in the angular region $4^{\circ}<2 \theta<$ 139°. The recording of RbTiI_{3} at 4.2 K was done in the angular region $4^{\circ}<2 \theta<90^{\circ}$ with a higher counting time in order to obtain higher resolution.

The profile program of Rietveld (10) was used for the refinements. No absorption corrections were applied. The coherent scattering lengths used (11) are $b(\mathrm{Rb})=$ $0.71, b(\mathrm{Cs})=0.55, b(\mathrm{Ti})=-0.34, b(\mathrm{~V})=$ -0.038 , and $b(\mathrm{I})=0.53$, all in units of 10^{-12} cm . The magnetic form factors were taken from Watson and Freeman (12).

Refinements on the Neutron Diffraction Data

CsVI 293 K
The refinement in space group $P 6_{3} / m m c$
was started with the positions of the ions in CsMnI_{3} (11), which adopts the BaNiO_{3} structure. Full matrix refinement led to convergence at

$$
\begin{aligned}
R(\text { total }) & =\sum_{i} \mid I_{i}(\mathrm{obs}) \\
& -(1 / c) I_{i}(\text { calc }) \mid / \sum_{i} I_{i}(\mathrm{obs})=0.044
\end{aligned}
$$

and

$$
\begin{aligned}
R(\text { profile })= & \left\{\sum _ { j } w _ { j } \left(y_{j}(\mathrm{obs})\right.\right. \\
- & \left.\left.(1 / c) y_{j}(\mathrm{calc})\right)^{2}\right] \\
& \left.\sum_{j} w_{j}\left(y_{j}(\mathrm{obs})\right)^{2}\right\}^{1 / 2}=0.128,
\end{aligned}
$$

where I_{i} is the intensity of the i th reflexion and y_{j} is the intensity of the j th measuring point; w_{j} is a statistical weight factor and c is a scaling factor. Refinements in the space groups $P 6_{3} m c$ and $P \overline{6} 2 c$ did not lead to significantly lower R values and shifts of the ions. The observed and calculated profiles are shown in Fig. 1. The final

Fig. 1. The observed and calculated diffraction profiles of CsVI_{3} at (a) 293 and (b) 1.2 K . The large peaks at 77 and 91° are due to the cryostate.

TABLE II
Cell Dimensions, Positional Parameters, Overall Isotropic Thermal Parameter ($b_{0}=$ $8(\pi \bar{U})^{2} \AA^{2}(17)$), and the Magnetic Moment of CsVI_{3} with a 120° Structure in the Basal Plane

parameters and some relevant distances and bond angles are listed in Table II and III.
$\mathrm{CsVI}_{3} 1.2 \mathrm{~K}$
The diffraction diagram of CsVI_{3} recorded at 1.2 K contains a number of extra weak reflections. These reflections must originate in a three-dimensional magnetic ordering since the intensities of the reflections decrease rapidly with increasing 2θ. The extra reflections can all be indexed to an $a 3^{1 / 2}, a 3^{1 / 2}, c$ unit cell, a and c being the axes of the nuclear unit cell.

Four magnetic models were introduced in the refinement, viz., two collinear and two 120° structures (see Fig. 2). Of these four models the 120° structure with the tion pattern that CsVI_{3} adopts a distorted BaNiO_{3} structure like RbVI_{3} does.

TABLE III
Some Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ in CsVI_{3} at 293 K

Cs-I	$4.10(1)$	I-I	$4.00(1)$
Cs-I	$4.06(1)$	I-I	$4.12(1)$
V-I	$2.92(1)$	I-I	$4.14(1)$
V-I-V	$70.8(4)$		

Fig. 2. The magnetic structures used as models for the refinements. The magnetic unit cell with the chains I-IV is given in a. Model A and B are 120° structures in the basal plane and (110) plane, respectively. In model C and D the magnetic moments are parallel to [lll $\left.\begin{array}{lll}1 & 1 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$, respectively.
magnetic moments in the basal plane resulted in the lowest R value for the magnetic intensity part of R (total) (see Table IV).

No indication was found from the diffracTABLE IV
The Final R Values of the Refinements of CsVI_{3} AND RbVI_{3} AT 1.2 K

	R (profile)	R (total)	R (nuclear)	R (magnetic)
$\mathrm{CsVI}_{3} \mathrm{PG}_{3} / \mathrm{mmc}$				
Model A	0.139	0.070	0.061	0.199
Model B	0.141	0.073	0.061	0.250
Model C	0.139	0.070	0.061	0.202
Model D	0.152	0.081	0.061	0.416
$\mathrm{RbVI}_{3} \mathrm{~Pb}_{3} \mathrm{~cm}$				
Model A	0.162	0.123	0.121	0.197
Model B	0.166	0.128	0.121	0.322
Model C	0.166	0.128	0.121	0.306
Model D	0.173	0.133	0.120	0.456
$\mathrm{RbVI}_{3} \mathrm{P}_{\mathbf{j}} \mathbf{1}$				
Model A	0.169	0.125	0.123	0.202
Model B	0.175	0.130	0.124	0.310
Model C	0.170	0.126	0.122	0.234
Model D	0.170	0.136	0.126	0.432

The final parameters for the magnetic model with a 120° spin arrangement in the basal plane are given in Table II and the observed and calculated profiles are depicted in Fig. 1.
$\mathrm{RbVI}_{3} 293 \mathrm{~K}$
Zero- and upper-level Weissenberg photographs taken at 293 K show RbVI_{3} to have a unit cell which can be described as an $a 3^{1 / 2}, a 3^{1 / 2}, c$ superstructure of the BaNiO_{3} structure. The zero-level ($h k 0$) photograph contained no superreflections. The deviation from the BaNiO_{3} structure must be found mainly in a shift of the $B X_{3}$ chains along the c axis because of the absence of $\left\{\begin{array}{ll}k & 0\}\end{array}\right.$ superreflections. Since the mirror plane perpendicular to the c axis is destroyed by these shifts the space groups $P \sigma_{3} / \mathrm{mcm}$ and $P \bar{\sigma} c 2$ can be eliminated. Assuming that the distortion from the BaNiO_{3} structure occurs mainly as a shift of complete BI_{3} chains with a deformation of the chains as small as possible, two space groups remain to be investigated, viz., $P 6_{3} c m$ and $P \overline{3} c 1$. For both space groups one chain is fixed while the other two chains in the unit cell are shifted in the same direction for $\mathrm{P}_{3} \mathrm{~cm}$ and in opposite directions for P $\overline{3} \mathrm{c} 1$ (see Fig. 3).

Fig. 3. A (0001) projection of the coordination polyhedron of Rb^{+}in RbVI_{3}. The I^{-}ions 1,2 , and 3 are fixed. In $P 6_{3} c m$ the other I^{-}ions are shifted along the c axis in the same direction. In $P \overline{3} c 1$ the shift of the ions 4,5 , and 6 is opposite to the shift of the I^{-}ions 7,8 , and 9.

Full matrix refinement was done for both space groups and resulted in R (profile) $=$ 0.130 and R (total) $=0.086$ for space group $P 6_{3} \mathrm{~cm}$, and R (profile) $=0.130$ and R (total) $=0.085$ for space group $P \overline{3} c 1$. Since the two models can not be discriminated using the R values the results of both refinements are given in Table V . The experimental and calculated profiles (for space group $P_{3} \mathrm{~cm}$) are depicted in Fig. 4. Some relevant distances and bond angles for both space groups are given in Table VI.

$R b V I_{3} 1.2 \mathrm{~K}$

For the refinements on the diffraction data of RbVI_{3} recorded at 1.2 K the space

TABLE V
Cell Dimensions, Positional Parameters, Overall Isotropic Thermal Parameters ($b_{0}=$ $8(\pi \bar{U})^{2} \AA^{2}$ (17)) and the Magnetic Moment of RbVI_{3} with the Space Groups $P 6_{3} \mathrm{~cm}$ and $P \overline{3} \mathrm{c} 1$ and a Magnetic 120° Structure in the Basal Plane ${ }^{a}$

[^0]

Fig. 4. The observed and calculated diffraction profiles of RbVI_{3} at (a) 293 and (b) 1.2 K .
groups $P 6_{3} c m$ and $P \overline{3} c 1$ were used with the four magnetic models shown in Fig. 2. Similar to CsVI_{3} the models with the magnetic moments in the basal plane, forming a 120° arrangement, yielding the lowest R values. The final R values for all four

TABLE VI
Some Relevant Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ at 293 K for RbVI ${ }_{3}$ with Space Groups $P 6_{3} \mathrm{~cm}$ AND $P \overline{3} c 1^{a}$

	$P 6_{3} c m$	$P \overline{3} c 1$
$\mathrm{Rb}-\mathrm{I}(1)_{1,3}$	$3.97(3)$	$3.96(3)$
$\mathrm{Rb}-\mathrm{I}(1)_{2}$	$3.85(4)$	$4.07(3)$
$\mathrm{Rb}-\mathrm{I}(1)_{2}$	$4.35(4)$	$4.07(3)$
$\mathrm{Rb}-\mathrm{I}(2)_{4,9}$	$4.01(6)$	$4.05(5)$
$\mathrm{Rb}-\mathrm{I}(2)_{6,7}$	$4.07(5)$	$4.03(4)$
$\mathrm{Rb}-\mathrm{I}(2)_{8}$	$4.45(4)$	$3.85(2)$
$\mathrm{Rb}-\mathrm{I}(2)_{8}$	$3.87(4)$	$4.49(2)$
$\mathrm{Rb}-\mathrm{I}(2)_{5}$	$3.87(4)$	$3.85(2)$
$\mathrm{Rb}-\mathrm{I}(2)_{5}$	$4.45(4)$	$4.49(2)$
$\mathrm{V}(1)-\mathrm{I}(1)$	$2.86(4)$	$2.90(4)$
$\mathrm{V}(2)-\mathrm{I}(2)$	$2.83(2)$	$2.82(2)$
$\mathrm{V}(1)-\mathrm{I}(1)-\mathrm{V}(1)$	$73.0(11)$	$72.0(11)$
$\mathrm{V}(2)-\mathrm{I}(2)-\mathrm{V}(2)$	$73.9(6)$	$74.3(5)$

[^1]models in the space groups $\mathrm{Pb}_{3} \mathrm{~cm}$ and $P \overline{3} c 1$ are given in Table IV. The results of the refinements on this magnetic model in both space groups are listed in Table V. The observed and calculated profiles for $\mathrm{Pb}_{3} \mathrm{~cm}$ are shown in Fig. 4.
In the observed diffraction profile several peaks had a small shoulder. It was investigated whether these reflections could be indexed with a larger unit cell. No satisfactory results were obtained. Further investigation is necessary.

RbTiI $_{3} 293$ and 4.2 K
No sample of pure RbTiI_{3} could be prepared. The diffraction pattern contains reflections of RbTiI_{3} and RbI as well as other peaks. The peaks could not be indexed by simple unit cell enlargments. The peaks do not coincide with strong reflections, calculated by means of the profile program of Rietveld for TiI_{2}, $\mathrm{Rb}_{3} \mathrm{Ti}_{2} \mathrm{I}_{\mathrm{g}}$, and $\mathrm{Rb}_{2} \mathrm{Ti}_{8}$ with the atomic positions of $\mathrm{TiI}_{2}, \mathrm{Cs}_{3} \mathrm{Cr}_{2} \mathrm{Cl}_{9}$, and $\mathrm{Cs}_{2} \mathrm{TiCl}_{8}$ (12). Because several peaks of RbI did not overlap with other peaks, the scale factor, the cell dimensions and the half-width parameters could be determined. Next, the calculated diffraction profile of RbI was subtracted from the recorded diffraction diagram.
On these corrected diffraction data the refinements were done with three models, viz., the BaNiO_{3} structure and the two models discussed for RbVI_{3}. The best fits were obtained for the distorted BaNiO_{3} structures with space groups $P \overline{3} c 1$ and $P 6_{3} c m$, with R (profile) $=0.215$ and R (total) $=0.148$. The R values are high due to the contamination. The observed and calculated profiles are shown in Fig. 5 and the final parameters are given in Table VII.
The diffraction diagram of RbTiI_{3} recorded at 4.2 K shows no magnetic reflections, indicating the three-dimensional ordering takes place below or not far above 4.2 K .

Fig. 5. The observed and calculated diffraction profiles of RbTiI_{3} at (a) 293 K .

Magnetic Measurements

Susceptibility versus temperature and magnetization versus magnetic field measurements were performed parallel and perpendicular to the c axis on a single crystal of $\mathrm{CsVI}_{3}(207 \mathrm{mg})$ and three equally oriented single crystals of RbVI_{3} (total 134 mg). The magnetization vs magnetic field curves show a slight bending ($\delta M / \delta H$ is decreasing with increasing H) and contain no relevant information. The χ vs T curves depicted in Figs. 6 and 7 show a rise in χ at low temperatures due to a contamination of the crystals. The contamination is estimated to be $0.2-0.3 \%$ and must be due to a reaction of the sample with the atmosphere in the dry glovebox during the cutting of the crystals. (Very small crystals lost their transparency in a few minutes in the dry glovebox.)

TABLE VII

Cell Dimensions, Positional Parameters, and Overall Isotropic Thermal Parameter ($b_{0}=$ 8($\left.\pi \bar{U})^{2} \AA^{2}(17)\right)$ of RbTiI_{3} in Space Group $\mathrm{Pb}_{3} \mathrm{~cm}$ AT $293 \mathrm{~K}^{a}$

$a=14.024(3) \AA$		$c=6.796(2) \AA$	$b_{0}=4.4(2) \AA^{2}$
	x	y	z
Rb	$0.327(3)$	$0.327(3)$	$0.280(6)$
$\mathrm{Ti}(1)$	0	0	0
$\mathrm{Ti}(2)$	$\frac{1}{2}$	$\frac{3}{2}$	$0.086(3)$
$\mathrm{I}(1)$	$0.172(3)$	0	4
$\mathrm{I}(2)$	$0.518(1)$	$0.166(2)$	$0.336(3)$

[^2]

Fig. 6. The temperature dependence of the susceptibility of CsVI_{3} parallel (open circles) and perpendicular (full circles) to the c axis, measured in a magnetic field of 9.4 kOe .

The contamination seems to make the determination of the three-dimensional transition temperature, T_{c}, impossible. However, considering the difference between the susceptibilities at various temperatures parallel and perpendicular to the c axis, $\chi_{\| c}-\chi_{\llcorner c}$, a sharp change is found for both compounds (see Fig. 8). A similar change is found at $T=11 \mathrm{~K}$ (see Fig. 9) for CsMnI_{3} (13) which adopts a 120° structure with the magnetic moments in the (110) plane. By means of neutron diffraction and susceptibility measurements this temperature was shown to be the three-dimensional transition temperature of CsMnI_{3}. By implication the three-dimensional transition temperatures are $T_{\mathrm{c}}=32(1) \mathrm{K}$ for CsVI_{3} and T_{c} $=25(1) \mathrm{K}$ for RbVI_{3}.
Additionally χ vs T measurements (see Fig. 10) in the temperature region $80-330 \mathrm{~K}$ were done on a powder of RbVI_{3}. The

Fig. 7. The temperature dependence of the susceptibility of RbVI parallel (open circles) and perpendicular (full circles) to the c axis, measured in a magnetic field of 5.6 kOe .

Fig. 8. $\chi_{\| c}-\chi_{\perp c}$ vs T for CsVI_{3} and RbVI_{3}.
maximum in the susceptibility is found at T $=240(10) \mathrm{K}$. No attempts were made to fit the observed χ vs T curve as the hightemperature region was not measured.
The χ vs T curve of RbTiI_{3}, measured on a powder, containing impurities, is shown in Fig. 11. The curve shows a very broad maximum characteristic of a one-dimensional system, with a rise at lower temperature due to paramagnetic impurities. The maximum in the susceptibility is found at 90(5) K.

Discussion

CsVI_{3} adopts the BaNiO_{3} structure like all $\mathrm{CsBI} \mathrm{I}_{3}$ compounds do at room temperature (see Table I). CsVI_{3} consist of face sharing VI_{6} octahedra forming infinite chains in the c direction. The Cs^{+}ions are in a 12 coordination of I^{-}ions. The ratio of the estimated ion radii (15) $r(\mathrm{Cs}) / r(\mathrm{I})$ is 0.86 . This ratio is considerably smaller for the Rb compounds: $r(\mathrm{Rb}) / r(\mathrm{I})=0.79$. The Rb^{+}ion will be to small for a 12 coordina-

Fig. 9. $\chi_{⿺ 𠃊}-\chi_{\text {lic }}$ vs T for CsMnI_{3}.

Fig. 10. Susceptibility vs temperature curve of a powder of RbVI_{3} using the Faraday method.
tion of I^{-}ions and a deviation from the 12 coordination is to be expected.

As can be seen from Table VI a lower coordination for the Rb^{+}ion can be realized easily by a shift of the chains along the c direction. The coordination is in first approximation 9 for space $P 6_{3} \mathrm{~cm}$ and 10 for $P \overline{3} c 1$. For comparison the $\mathrm{Rb}-\mathrm{I}$ distances determined from a refinement with the BaNiO_{3} structure as model are $4.11(1) \AA$ (hexagon (see Fig. 2)) and $4.00(1) \AA$ (prism).

The large isotropic thermal parameters of RbVI_{3} and RbTiI_{3} point to disorder. Disorder is expected because in cooling through the phase transition domains will occur, leading to stacking faults at the boundaries. Furthermore, since almost the same coordination of the Rb^{+}ion is obtained for a shift in the positive or negative c direction, disorder can easily occur. Disorder is also reported for KNiCl_{3} (16), which has a distorted BaNiO_{3} structure with space group $P 6_{3} \mathrm{~cm} . \mathrm{RbVI}_{3}$ and RbTiI_{3} are possibly isostructural with KNiCl_{3}.

Fig. 11. Susceptibility vs temperature curve of a powder of RbTiI_{3} measured in a magnetic field of 8.4 kOe.

Fig. 12. A (0001) plane with V^{2+} ions. The squares represent the V^{2+} ions at the origin. Two types of interchain exchange interactions, J_{1} and J_{2}, occur, indicated by full-drawn and dashed lines, respectively. The unit is represented by the thin full-drawn lines.

The best fits to the experimental neutron diffraction data at 1.2 K were obtained for CsVI_{3} and RbVI_{3} with a 120° structure with the magnetic moments in the basal plane. When the in-plane anisotropy is small such a magnetic structure is to be expected for compounds with the BaNiO_{3} structure, where the exchange interactions between a chain and its six neighboring chains are all equal. In RbVI_{3} and RbTiI_{3} however two types of interchain interactions, J_{1} and J_{2} occur as indicated in Fig. 12. When J_{1} differs from J_{2}, which is to be expected since the exchange paths are not the same, a deviation from the 120° structure will occur. In Fig. 13 the situation for $J_{1}>J_{2}$ is depicted. The angle, α, describing the deviation from the 120° structure, depends on the ratio J_{1} / J_{2}. Because the intensities of the magnetic reflexions of RbVI_{3} are small no attempt was made to determine α.

Magnetic measurements on single crystals of CsVI_{3} and RbVI_{3} show $\chi_{\| c}$ to be larger than $\chi_{\perp c}$, which is consistent with the

Fig. 13. A (001) plane, similar to Fig. 12, with the deviation from the 120° structure, determined by the ratio of J_{1} and $J_{2} . \alpha$ is the angle of deviation.

Fig. 14. The orientation in a magnetic field of the magnetic moments of a distorted 120° spin structure.
neutron diffraction results. The magnetic lattices of CsVI_{3} and RbVI_{3} can be divided into six sublattices, each with a sublattice magnetization $\mathbf{M}_{i}(i=1,6)$. The antiparallel pairs of \mathbf{M}_{i} are taken to be \mathbf{M}_{1} and $\mathbf{M}_{2}, \mathbf{M}_{3}$ and \mathbf{M}_{4}, and \mathbf{M}_{5} and \mathbf{M}_{6}. The axis $\mathbf{M}_{1}-\mathbf{M}_{2}$ is denoted as $\Delta_{1} ; \Delta_{2}$ and Δ_{3} for the other pairs of \mathbf{M}_{i}. The measured $\chi_{\| c}$ and $\chi_{\perp c}$ are to be regarded as the sum of the susceptibilities of the six sublattices. Assuming the parallel susceptibilities ($\chi_{\|}^{s}$) as well as the perpendicular susceptibilities (χ_{\perp}^{s}) of the three pairs of sublattices to be equal, the resulting susceptibility is given by

$$
\chi=\sum_{i=1}^{3}\left(\chi_{\|}^{\mathrm{s}} \cos ^{2} \varphi_{\mathrm{i}}+\chi_{\mathrm{I}}^{\mathrm{s}} \sin ^{2} \varphi_{\mathrm{i}}\right)
$$

where φ_{i} is the angle between Δ_{i} and the magnetic field applied.

In the case of a 120° structure with the magnetic moments in the basal plane the total susceptibility parallel to the c axis will be

$$
\chi_{\| c}=3 \chi_{\perp}^{s}
$$

The susceptibility perpendicular to the c axis will be

$$
\chi_{\Perp c}=1.5 \chi_{\|}^{\mathbb{s}}+1.5 \chi_{\perp}^{\mathrm{s}}
$$

With $\chi_{\|}^{\mathrm{s}}$ vanishing at $T=0 \mathrm{~K}$ the expected ratio $\chi_{\| c} / \chi_{\perp c}$ is 2 at 0 K .

For a 120° structure the component of the energy

$$
\sum_{i}\left(\chi \Uparrow \cos ^{2} \varphi_{i}+\chi_{\mathbb{s}}^{\mathrm{s}} \sin ^{2} \varphi_{\mathrm{i}}\right) H^{2}
$$

with H in the basal plane is independent on the angle of \mathbf{H} with an arbitrary direction in the basal plane.

However, for compounds as RbVI_{3} with a deviation from the 120° structure the situation as depicted in Fig. 14 has the lowest energy. For this situation the ratio $\chi_{\| c} / \chi_{\perp c}$ will be $3 /\left(1+2 \cos ^{2} \beta\right)$, where β is defined in Fig. 14. Therefore in case of a deviation from the 120° structure as expected for RbVI_{3} the ratio $\chi_{\| c} / \chi_{L c}$ will be smaller than 2 , depending on the ratio J_{1} / J_{2}.

Because of the paramagnetic contamination of RbVI_{3} and CsVI_{3} the ratio $\chi_{\| c} / \chi_{\perp c}$ cannot be determined. An estimation, made using a correction for a paramagnetic impurity, yields 1.8 for CsVI_{3} and 1.3 for RbVI_{3}. In contradiction to $\chi_{\| c} / \chi_{\perp c}$ the exact value of $\chi_{\| c}-\chi_{1 c}$ is known and this value is higher for CsVI_{3} than for RbVI_{3}, although the averaged susceptibilities are about the same. $\chi_{\| c}-\chi_{\perp c}$ and the estimation of $\chi_{\| c} / \chi_{\downarrow c}$ suggest a deviation from the 120° structure for RbVI_{3}.

Although the magnetic measurements are hampered by contamination of the samples, they are in good agreement with the neutron powder diffraction results.

Acknowledgments

The author wishes to thank Dr R. A. G. de Graaff and Dr D. J. W. IJdo for the critical reading of the manuscript and Mr J. Strang of the Energiconderzoek Centrum Nederland for the performance of the neutron diffraction experiments.

References

l. H. J. Seifert and K. H. Kischka, Termochim. Acta 27, 85 (1978).
2. H. W. Zandbergen, J. Solid State Chem. 37, 189 (1981).
3. H. W. Zandbergen, G. C. Verschoor, and D. J. W. IJdo, Acta Crystallogr. Sect. B 35, 1425 (1979).
4. M. Niel, C. Cros, M. Pouchard, and J. P. Chaminade, J. Solid State Chem. 20, 1 (1977).
5. Ting-I Li, G. D. Stucky, and G. L. McPherson, Acta Crystallogr. Sect. B 29, 1330 (1973).
6. J. W. Weenk, Thesis, Utrecht (1976).
7. T. Smith and S. A. Friedberg, Phys. Rev. 176, 660 (1968).
8. R. Colton and J. H. Canterford, "Halides of the First Row Transition Metals," Wiley-Interscience, New York (1969).
9. H. T. Witteveen, Thesis, Leiden (1973).
10. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
//. G. E. Bacon, Compilation (1977).
12. R. E. Watson and A. J. Freeman, Acta Crystallogr. 14, 27 (1961).
13. H. W. Zandbergen, J. Solid State Chem. 35, 367 (1980).
14. R. W. G. Wyckoff, 'Crystal Structures,’’ 2nd ed., Vol. I, p. 269; Vol. III, pp. 341, 475, Interscience, New York (1964).
15. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
16. D. Visser, G. C. Verschoor, and D. J. W. IJDO, Acta Crystallogr. B 36, 28 (1980).
17. "International Tables for X-Ray Crystallography,'' Vol. II, p. 241, Kinoch Press, Birmingham (1959).

[^0]: ${ }^{a}$ The z parameters of $V(2)$ and $I(2)$ are coupled.

[^1]: ${ }^{a}$ The subscript numbers refer to the I^{-}ions depicted in Fig. 3.

[^2]: ${ }^{a}$ The z parameters of $\mathrm{Ti}(2)$ and $\mathrm{I}(2)$ are coupled.

